Specifications for Intelligent Systems: How do they differ from
those of Non-intelligent Ones?

Elena R. Messina and Hui-Min Huang
Intelligent Systems Division
National Institute of Standards and Technology
Gaithersburg, MD 20899-8230

ABSTRACT

A growing number of applications are utilizing
self-proclaimed inteliigent systems. As for
any complex system, specifications are necessary
for guiding the implementation, evaluating the
performance and verifying the product. We
examine the question of what unique features are
needed when specifying an intelligent system.
We also investigate various specification
techniques that may support these features.

1. INTRODUCTION

Intelligent systems have a myriad of definitions,
some of which include, does the right thing,
is non-linear, adaptive, goal-oriented,
knowledge-based, autonomous, capable of
learning, able to deal with uncertainty and
complexity, and uses symbolic reasoning,
Although these phrases are imprecise, they serve
to indicate the flavor of intelligent systems.
Clearly, they have more and different capabilities
than the majority of software systems, even
extremely complex ones. It is therefore
especially challenging to specify what the
intelligent system is supposed to do. This is a
relatively unexplored area and we attempt to
describe some possible means of specifying
intelligent systems.

2 SYSTEM AND SOFTWARE
SPECIFICATIONS

We begin by examining specifications for
software and systems in general. In this paper,
we define a system as

An assemblage of parts forming a complex or
united whole that serves a useful purpose [6]

Software can be specified in the following
aspects, system functions, system behavior,
system communications, conceptual

decomposition, component functions, component
behavior, and component communications. Each
of these aspects may require its own
specification technique.

In the software testing world, there is a major
distinction drawn between behavioral and
structural testing models [5]. These models can
apply to individual components and overall
systems. Behavioral, also known as Black Box,
evaluates the external phenomena exhibited by
what is being tested. These phenomena include
the system s expected functions, responses to
inputs and stimuli, and the outputs. It can
include temporal behavior and execution
characteristics. It does not include how the
system accomplishes its behavior. Therefore,
specific algorithms, data structures, and other
internal implementation-specific aspects are not
evaluated.

Structural, also referred to as White Box testing,
evaluates the internal aspects of the software.
For performing white box testing, the system
design and implementation must be specified.
Internal aspects, such as algorithms and data
structures are explicitly reviewed and tested.

We apply these two software testing models to
the specification of intelligent systems. Black
box specifies the behavioral aspects and white
box specifies the internal aspects of systems.

3. DISTINGUISHING AN INTELLIGENT
SYSTEM

We will present a simple example from the
Performance Metrics for Intelligent Systems
Workshop 2001 White Paper {16]. This will
serve to illustrate the complexities of specifying
an intelligent system (IS), versus a non-
intelligent system (NIS).

An intelligent system is given a job to do
(task, mission, set of commands). The job
definition for IS is expected to be less
specific than in an NIS. A system with
intelligence ought to have the capability to
interpret incomplete commands, understand
a higher level, more abstract commands and
to supplement the given command with
additional information that helps to generate
more specific plans internally. The IS should
understand the context within which the
command is given. For example, instead of
telling a mobile robot to go to a specific
location in world coordinates GO_TO (X,
Y), the command could be Go to the

window nearest to me. The robot should
understand what a window is and know that
it needs to find one which is the minimum
distance away from me and move to that
location. It also has a nominal proximity that
it maintains from the goal location. Notice
that the command did not determine how
close the robot needs to get to the window. It
is expected that the robot knows where to
stop the motion in similar cases, or the
distance from the window should allow for
convenient performance of other, or
consequent movements.

In this example, the robot has to interpret the
instruction and generate appropriate actions,
given a sensed model of the situation to which it
has to apply a priori knowledge about objects
like windows. These are some of the aspects of
an IS that need to be specified.

4. BLACK BOX SPECIFICATION

Commands
Input Signals Controller Output Signals
Sensors Actuators
L Process ||

isturbances

Figure 1: A Typical Process Control Model

Figure 1 shows a process model for a system. In
this- model, the inputs, outputs, constraints, and
disturbances can be less well-defined or crisp
for an IS.

Another example comes from [1], in which the
black box specification for an intelligent military
vehicle is given. The unmanned scout vehicle
will be required to perform duties of a typical
manned scout vehicle, which has a driver,
commander, and lookout. The duties include
locomotion, attention, and communication
functions. The scout, either robotic or human, is
expected to achieve a plan given by its
supervisor. The plan specifies a schedule of
waypoints (space and time) to a given tolerance
and a definition of the mission goal, such as
clearing a specific area using onboard sensors.
The plan is further specified, declaring that it be
performed using militaristic behaviors, such as
stealthy movements, performing bounding
overwatches with other vehicles, honoring
corridors, etc. The scout is required to
understand military maps, which may be updated
with new information from its own observations,
other scouts, or its superior or operator. It must
be able to use its sensors to perceive the
environment and avoid obstacles and hazards,
use concealment and cover, and recognize enemy
and friendly forces. The system must have the
capability to build situational awareness by
combining its perceptions with a priori
knowledge. Thus, it must be able to distill and
abstract the information it receives. It must
further be able to project the situation into the
future, in order to predict where enemy troops
may be located given current trajectories. And
finally, it must be able to adapt its behavior
given the situational awareness it has gained.

Taking a more generic perspective, the following
is a list of black box specifications for an
intelligent system:

e to interpret high level, abstract, and vague
commands and convert them into a series of
actionable plans

e to autonomously make appropriate decisions
as it is carrying out its plans

e to re-plan while executing its plans and
adapt to changes in the situation

e to register sensed information with its
location in the world and with a priori data

e to fuse data from multiple sensors, including
resolution of conflicts

¢ to handle imperfect data from sensors,
sensor failure or sensor inadequacy for
certain circumstances

e to direct its sensors and processing
algorithms at finding and identifying
specific items or items within a particular
class

¢ to schedule and focus resources according to
the vehicle s mission

e to handle a wide variation in surroundings or
objects with which it interacts
to deal with a dynamic environment
to map the environment so that it can
perform its job

e to update its models of the world, both for
short-term and potentially long-term using
efficient formats and organization

e to understand generic concepts about the
world that are relevant to its functioning and
ability to apply them to specific situations

e to deal with and model symbolic and
situational concepts as well as geometry and
attributes

e to work with incomplete and imperfect
knowledge by extrapolating, interpolating,
or other means

e to be able to predict events in the future or
estimate future status

e the ability to evaluate its own performance
and to learn and improve

Platoon Map ﬂmﬂﬁ SURROMATE PLATOON Plans for next 2 hours
wimte. [B mninims” ARG
Wehicle Map ﬂmm vEuloLe PlnsDornext 30seconds]
g l“—'. ,-..—J'* Task to be done on objects of attertion
At erd-ion Commomication. Mission Package g Lotomotion sumsystaw

s“bm .] L w—
% 3]~ FEF -

"'4 NV

Y 9, R, il
WAL N\
Hﬁﬂ*ﬂ‘é‘?ﬁ%ﬁﬂmz il Eﬁééﬁ%ﬁﬁg‘éﬁg 3 6% sccrd pTaee]

In terms of the representation of the
specifications, several key aspects must be

supported. They include numerical and
symbolic entities, uncertainty, probability,
| task command
supervisor
y-

update _.lsimulate l::,sd’nedule L_[scheduIeJ

knowledge)

hase —-bl evaluate H seledt |

\subtask command “\

Figure 2: AnRCS Node

ranges, fuzziness, temporal requirements or
constraints, and spatial requirements or
constraints.

5. WHITE BOX SPECIFICATION

Another approach is to specify how a system
should be constructed in order to attain
intelligence. In this view, the specification of
a proven architecture that supports intelligence,
such as 4D/RCS [2] or SOAR [18], would
suffice. Figure 2 shows an example of a 4D/RCS
node. A system s architecture is

Sseconud plans
“BulTH

- ﬂﬁ'ﬂ BT —

VN

Acthuator ouatpaat

SEMNSORS AND ACTUATORS

Figure 3: An Example for 4D/RCS Hierarchy

constructed from an assembly of nodes, arranged
in a hierarchical fashion and according to
guidelines set forth in the reference architecture.
Figure 3 is a representative example of an
autonomous vehicle implementation based on
4D/RCS. The node elements perform the
activities deemed necessary for achieving the
kinds of behaviors discussed in Section 4.

6. SPECIFICATION TECHNIQUES

We have been investigating existing
representation techniques for specifying
intelligent systems and believe that there are
several viable alternatives. Although further
research and verification is necessary, we briefly
discuss some approaches for representing
intelligent systems. Often, the comprehensive
and higher level specification languages or
methods encompass several elementary
techniques. We will note some examples in this
section.

For black box specification, there are several
options from the formal methods or formal
representation domain.

Finite state machines (FSM) have been used
extensively for specifying the behavior of
intelligent systems. There are limitations,
however, in terms of being able to specify
fuzziness, constraints, etc. Research has been
done to extend FSM s capability toward this
direction. Extended finite state diagram [20]
utilizes variables, in addition to events, to
facilitate handling continuous domain aspects.
Hybrid state machine [19] uses regular
expressions and combines multiple events to
handle the complexity issue.

One must also recognize that FSM s cannot
specify the data /knowledge and its
representation.

XML has begun to play a role in software
architectural specifications [21]. XML aims at
improving the markup to facilitate unambiguous
meanings of data that HTML lacks. Yet XML is
limited in describing objects and their
relationships, this gives rise to the new DARPA
Agent Markup Language (DAML) [11], which is
worth further investigation.

For white box specification, one can use the
traditional software engineering structured
techniques, such as entity relation diagrams

(ERD), data flow diagrams (DFD), flow charts,
and block diagrams. Wieringa provided a
thorough survey on these techniques [20]. He
also noted that the Yourdon System Method
(YSM) uses a context diagram to specify some
black box aspects for systems and uses ERD and
DFD to specify some white box aspects.
Another comprehensive language, Specification
and Description Language (SDL), uses state
diagrams and message sequence charts to specify
systems external behavior black box and uses
block diagrams for a part of white box
specification [4].

Formal methods are also applicable. One
approach, using Architectural Description
Languages (ADL), was investigated in depth
[10]. Particular representational requirements
that were found to be necessary in order to model
behavior of an intelligent system include:
specifying system components, specifying
connections between components, specifying
system behaviors, and defining architectural
style. A case study provided positive indication.

Interface Definition Language (IDL) is used to
specify software component interfaces,
traditionally limited to the data aspect. It has
been revealed that adding behavioral
specification to IDL would lead to more robust
systems [8]. This is an issue of syntactic versus
semantic. We believe that this work is worth
further investigation as a part, but not the whole
solution, of the IS specification techniques.

Craig has, in his book entitled, Formal
Specification of Advanced AI Architectures,
applied the Z language to formally specify two
Al architectures, blackboard and CASSANDRA
[9]. The achieved specifications exist in the
form of shell, which can be used to encode
knowledge of application systems.

The Unified Modeling Language (UML) seems
to be able to support both black box and white
box system specification. UML, being object
oriented, is inherently consistent with the
physical world in terms of specifying objects that
an IS is to operate with. UML employs state
transition diagrams for specifying behaviors.
UML has emerged as an industrial standard
language. We, therefore, take a closer look at it
in the next section.

7 .UML TO SPECIFY SYSTEM
INTELLIGENCE

To achieve intelligent systems, it is imperative to
specify them using a comprehensive and
standard language. UML satisfies these
requirements by allowing:

e Specifying data requirements and the
associated knowledge engineering processes
that can evaluate and judge data that contain
uncertainties. UML further provides
customized representations such as
stereotypes and profiles that can be used to
specify domain specific knowledge items.

¢ Specifying data relationships with the UML
features including generalization,
aggregation, and multiple kinds of
associations. These facilitate transitions
from raw data to knowledge with different
levels of abstraction. Figure 4 gives an
example.

e Specifying complex goal structures that
contain uncertainties, requiring evaluation

cbjectType

proguces3

level3Process

processess

surfaceType

producesZ.

sensoryProcess

< }——] level2Process

v processes2

listType

produce.

4

level1Process

cessest
=Ny

pixelType

Figure 4: Specifying a Sensory Processing

Function with UML
and judgement. For example, Fill up the
gas tank ASAP.

e Specifying complex task structures
containing either ambiguities or specific
terms that require interpretation or
knowledge inference. For example, to
perform a search to find a trapped person

named John Doe. Figure S illustrates such a
task representation.

congucts
search e

targets moughllrea

map

eriays_3

AN

building

Fioure 5: LIMI. Spnecification of an IS Tacgk

e Use sequence diagrams to specify system
behavioral requirements. Scenario driven
methods have been used to specify system
requirements {13,17,7].

(1
overlays’t en ays 2

[
Ly’

8. RELATED WORK

In surveying existing techniques and tools for
specifying intelligent systems, we note that the
agent world has been extensively defining
various agents. The Foundation for Intelligent
Physical Agents (FIPA) [12] has several
examples on their web site. Their approach is
black box:

The first characteristic assumed is that agents
are communicating at.a higher level of discourse,
i.e. that the contents of the communication are
meaningful statements about the agents
environment or knowledge. This is one
characteristic that differentiates agent
communication from, for example, other
interactions between strongly encapsulated
computational entities such as method invocation
in CORBA.

Core capabilities are described in terms of
agent s mental attitudes: Belief, Uncertainty, and
Intention.

Intelligent Networks also have evidence of
similar requirements to intelligent systems and
have taken the FSM approach, as well as formal
specifications. SDL [4] is used extensively in
this domain.

9. SUMMARY

We studied the issue of the definition of
intelligent systems. We also proposed a model
for system specification that contains black box
and white box specification. We listed the black
box specification criteria for intelligent systems
and discussed the white box specification
approaches for intelligent systems. We
evaluated many specification techniques in an
attempt to find viable ones for the specification
of intelligent systems. We provided examples of
how UML are used to specify certain aspects of
the 4-D/RCS intelligent system architecture.

REFERENCES

1.
12.
13.

Albus, J., "Features of Intelligence Required by
Unmanned ground Vehicles," Proceedings of the
2000 Performance Metrics for Intelligent
Systems Workshop, Gaithersburg, MD, 2000.
Albus, J., 4-D/RCS: A Reference Model
Architecture for Demo 111, NISTIR 5994, NIST,
Gaithersburg, MD, 1997.

Blanchard, B., and Fabryky, W., 1990 Systems
Engineering and Analysis, Prentice-Hall,
Englewood Cliffs, N.J.

Belinda, F. and Hogrefe, D., "The CCITT-
Specification and Description Language SDL,"
Computer Networks and ISDN Systems, Vol 16,
pp. 311-341, Elsevier Science, Publishers, B.V.,
North-Holland, 1989.

Beizer, Software Testing Techniques, Van
Nostrand Reinhold, 1990. o

Blanchard, B., and Fabryky, W., 1990 Systems
Engineering and Analysis, Prentice-Hall,
Englewood Cliffs, N.J.

Chen XJ, Logrippo L, "Deriving use cases for

distributed systems from knowledge
requirements,” Annales Des
Telecommunications- Annals of

Telecommunications 55: (1-2) 45-57 Jan-Feb
2000, ISSN: 0003-4347 Presses Polytechniques
Et Universitaires Romandes, Lausanne,
Switzerland.
Cicalese,
"Behavioral
Software Component Interfaces,"
Computer, July, 1999,

Craig, 1.D., Formal Specification of Advanced Al
Architectures, Ellis Horwood, New York, NY,
1991.

Dabrowski, C., Huang, H., Messina, E., and
Horst, J., Formalizing the NIST 4-D/RCS
Reference Model Architecture Using an
Architectural Description Language, NISTIR
6443, Gaithersburg, MD, December, 1999.
http://www.daml.org/index.htm}
http://www.fipa.org/index.html

Huang, HM, et al., "Intelligent System Control: A
Unified Approach and Applications," Book

C.D.T. and Rotenstreich, S.,
Specification of Distributed
IEEE

15.

16.

17.

18.

20.

21.
22.

Chapter in Academic Press Volumes on "Expert
Systems Techniques and Applications,” C. T.
Leondes, Ed., 2000.

N.G. Leveson, M.P.E. Heimdahl, and J.D. Reese.
Designing Specification Languages: Lessons
Learned and Steps to the Future. Proceedings of
the Seventh ACM/SIGSOFT Symposium on the
Foundations of Software Engineering, Toulouse,
France, September, 1999.

N. G. Leveson, M. P.E. Heimdahl, H. Hildreth,
and J. Reese. Requirements Specification for
Process Control Systems. IEEE Transactions on
Software Engineering, Vol. SE-20, No. 9, pp.
684-707 (September 1994).

Messina, E., Meysel, A., Reeker, L., Measuring
Performance and Intelligence of Intelligent
Sytems White Paper 2001, Proceedings of the
2001 Performance Metrics for Intelligent
Systems Workshop, Mexico City, Mexico,
2001.

Mortensen KH, "Automatic code generation
method based on coloured Petri net models
applied on an access control system," Application
and Theory of Petri Nets 2000, Proceedings,
Springer-Verlag Berlin, Berlin, 2000.
http://ai.eecs.umich.edu/soar/

Sakharov, A., "A Hybrid State Machine Notation
for Component Specification,” ACM SIGPLAN
Notices, V. 35 (4), April 2000.

Wierenga, R., A Survey of Structured and
Object-Oriented Software Specification Methods
and Techniques, ACM Computing Surveys,
Vol. 30, No. 4, December, 1998.
http://www.isr.uci.edu/projects/xarchuci/

Zhang, Y. and Mackworth, A., Formal
Specification of Performance Metrics for
Intelligent Systems, Proceedings of the
Performance Metrics for Intelligent Systems
Workshop 2001, NIST SP 970.

